Repository and Mining of Temporal Data

Jessica Nguy Siomara Nieves

Dr. Philip Chan

Progress of

Current Milestone

	Task	Completion %	Jessica	Siomara	To-Do
A	CSV User Input catch cases	95%	0%	95%	Add more test cases
	Q1	90%	80%	10%	Test, x-axis for figures 2 and 3
	Website	100%	80%	20%	Completion deferred to later Milestone
	Data Processing	N/A	N/A	N/A	Deferred to Milestone 3
	Database setup for Meta-data, Meta-data inputs	80%	0%	80%	Switch Database to SQLite; Deferred to Milestone 3
	Evaluation Document, Presentation	100%	60%	40%	None

Discussion of Each Accomplished Task

- .CSV User Input Test Cases
- Q1
- Website
- Data Processing
- Database Setup
- Evaluation Document, Presentation

parseCSV


```
import csv
       def read file():
            #userIn = input ("Enter input file: ")
           print("Enter input file:")
           #userIn = input() + ".csv"
           with open(input()) as csvFile:
                readCSV = csv.reader(csvFile, delimiter=",") # csv = comma separated
12
                dates = []
               info = []
13
14
15
                for row in readCSV:
16
                   time = row[0]
17
                   data = row[1]
18
                   if time == "." or data == ".": # where there's a date with no data put ' .
19
                       continue
                    elif time == " " or data == " ": # testing for blanks
23
                        continue
24
25
                    else: # only add them in here
26
                        dates.append(time)
27
                       info.append(data)
28
29
            return (info, dates)
```

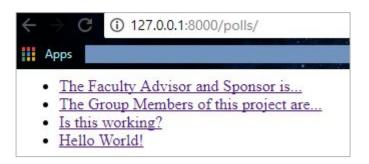
Q1

```
# ------ Part i -----
26
27
       # 1
28
       # | Convert csv file to readable
29
       # | format for x-axis and v-axis
30
       # |
31
32
       # Takes in csv file for x-axis and y-axis from csvReader
33
34
       yaxisI, xaxisI = read file()
35
36
       xTitle = xaxisI.pop(0)
37
       yTitle = yaxisI.pop(0)
38
39
       xaxis datetime = []
40
        for x in xaxisI:
41
           xaxis_datetime.append(datetime.strptime(x, '%Y-%m-%d'))
42
43
           ...
```

```
56
       # ----- Part 1 -----
        # |
57
        # | Graph x-values versus v-values |
        # |
59
60
61
62
       titleString = "Q1: Time versus "
63
64
       titleString = titleString + vTitle
65
       # Graph Plot
66
       fig1 = plt.figure()
       fig1 = plt.plot(xaxis, yaxis)
68
       plt.title(titleString) # Append variable
69
70
       plt.xlabel(xTitle)
       plt.ylabel(yTitle)
71
```

Q1

```
75
         # ------ Part 2 -----
 76
 77
        # | Graph the change in x-values
 78
         # | Calculate z-scores for dataset
                   Color-Code Range
 79
 80
 81
        meanY = np.mean(deltaY)
107
        stdDevY = np.std(deltaY)
108
109
110
        topRangeZ = (meanY + (3.0 * stdDevY))
111
        highRangeZ = (meanY + (2.5 * stdDevY))
112
        zeroRangeZ = (meanY + (0 * stdDevY))
113
        lowRangeZ = (meanY + (-2.5 * stdDevY))
        bottomRangeZ = (meanY + (-3.0 * stdDevY))
114
115
116
        # -----
117
       # Convert lists into numpy-readable
118
        x = np.array(deltaX)
119
        y = np.array(deltaY)
120
121
122
        cmap = ListedColormap(['r', 'y', 'g', 'y', 'r'])
        norm = BoundaryNorm([negInf, bottomRangeZ, lowRangeZ,
123
124
                             highRangeZ, topRangeZ, posInf], cmap.N)
        points = np.array([x, y]).T.reshape(-1, 1, 2)
126
        segments = np.concatenate([points[:-1], points[1:]], axis=1)
```

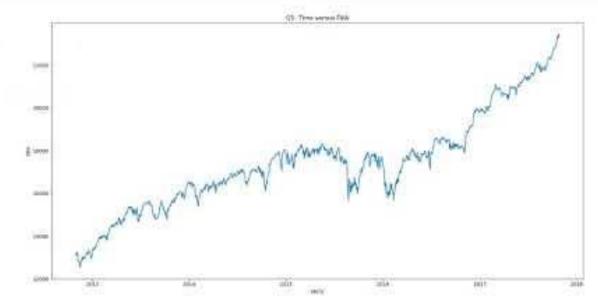

```
149
         # ----- Part 3 -----
151
         # | Graph x-values versus z-score
                  Color-Code Range
152
153
154
155
         #graph x values z-score
156
         yzaxis = []
         yzaxis = stats.zscore(yaxis)
         # ----- Set Line Colors -----
164
         fig3 = plt.figure()
165
166
167
        xzaxis = np.array(xaxis)
168
         yzaxis = np.array(yzaxis)
184
         # ----- Plot Graph -----
186
         plt.title(begTitle)
187
        plt.axhline(y=3.0, c='k', linestyle='--')
188
        plt.axhline(y=2.5, c='k', linestyle='--')
        plt.axhline(y=0, c='k', linestyle='--')
189
        plt.axhline(y=-2.5, c='k', linestyle='--')
190
        plt.axhline(y=-3.0, c='k', linestyle='--')
191
192
         plt.xlabel(xTitle)
193
        plt.ylabel(midTitle)
194
         #fig3 size = plt.rcParams["figure.figsize"] = [8,8]
195
196
197
        plt.show()
```

Website

```
MINGW64 ~/documents/school/djstorage/mysite
$ source ~/.virtualenvs/djangodev/Scripts/activate
(djangodev)

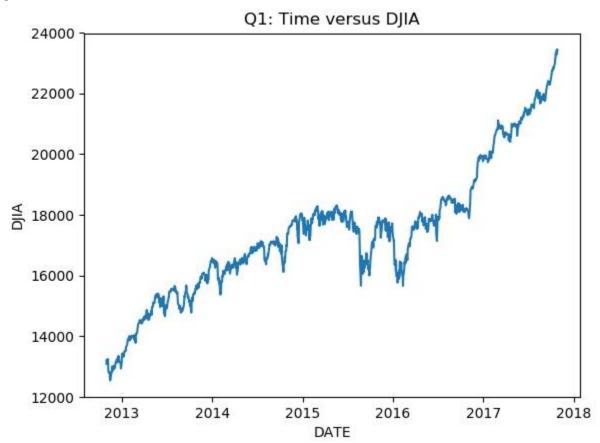
MINGW64 ~/documents/school/djstorage/mysite
$ python manage.py runserver
Performing system checks...

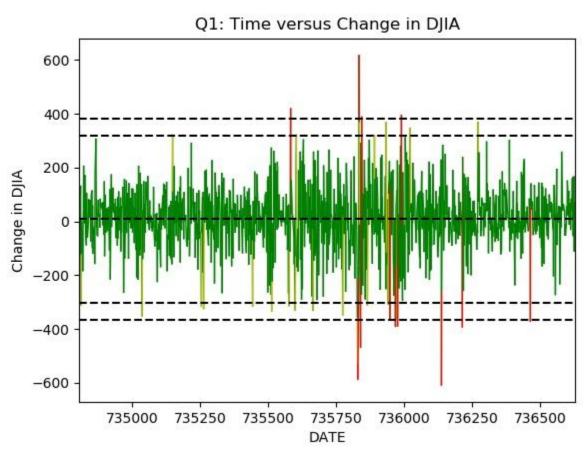
System check identified no issues (0 silenced).
October 30, 2017 - 10:15:49
Django version 2.1.dev20171010132034, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CTRL-BREAK.
```

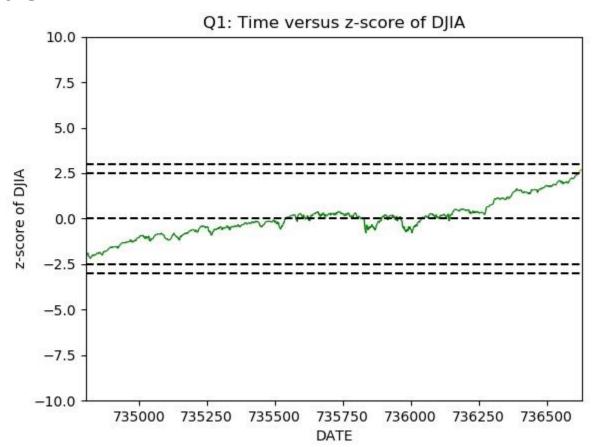


- Data Processing: not used for Q1, deferred to a later Milestone.
- **Database Setup:** Database is complete but will be changed from SQL to SQLite and further enhanced on in Milestone 3. The current database saves the metadata (tags, description, start/end timestamps, public/private) that will be provided by the user for Q2.
- Evaluation Document, Presentation

Demo




Comparison to FRED Economic Data


Q1: Part 1

Q1: Part 2

Q1: Part 3

Plan for Next Milestone

	Task	Jessica	Siomara	
no	1.) Q2	Calculations for Pearson correlation, cross correlation, visualizations, writing main code	File storage, file conversion, visualizations	
ne	2.) Narrow Data	Research and create program to narrow data. Integration with database may be needed. Create NarrowData.py	Research how to implement a search for queries depending on the metadata provided by other users.	
	3.) Database Processing	Make sure that code can use information from the database	Linking database to Django, running test cases for queries and selections	
	4.) Meta-Data, Meta-Data inputs	Create Input.py, be able to retrieve metadata and use it to run Narrow Data.py	Asking user for metadata input and storing into the database	
	5.) Improve existing code	Ensure that changes in .csv are carried over and do not break Q1.py and Q2.py	Creating more catch cases for errors in file, x-axis plotting for figures 2 and 3	
	6.) Evaluation Document, Presentation	Write evaluation document, Create presentation, put code onto GitHub repository.	Write evaluation document, Create presentation, put code onto GitHub repository.	