
Repository and Mining of Temporal Data
Milestone 2 Evaluation

 Team Members:
 Jessica Nguy jnguy2014@my.fit.edu
 Siomara Nieves snieves2014@my.fit.edu

Faculty Sponsor and Client:
Philip Chan pkc@fit.edu

Meetings With the Client:
Oct 13; Oct 30

Progress of Current Milestone:

Task Completion % Jessica Siomara To-Do

CSV User Input catch cases 95% 0% 95% Add more test
cases

Q1 90% 80% 10% Test, x-axis for
figures 2 and 3,
change to plotly

Website 100% 80% 20% Completion
deferred to later
Milestone

Data Processing N/A N/A N/A Deferred to
Milestone 3

Database setup for
Meta-data, Meta-data inputs

80% 0% 80% Switch Database
to SQLite;
Deferred to
Milestone 3

Evaluation Document,
Presentation

100% 60% 40% None

Discussion of Each Accomplished Task:
Task 1: Python program accepts a single .csv file and checks for the values on top of the

columns to know which one is the time and which one is the data. The file saves the time and
data values into two lists. The lists are later converted into two separate arrays and then passed
when called by Q1. Test cases for now include having blanks, having something written other
than a float value, and having dots on the .csv file. Further research into handling different
timestamps (Dates being in Year-Month-Day, Year/Month/Day, Hour:Minute:Second, etc)
required.

Task 2: Programmed Q1, which consists of calling csv.py and taking the data as arrays
then changing the timestamps as strings to datetime objects for plotting and to floats for
calculations.

For the first visualization: the program will graph the target variable versus time. There is
no additional calculations done with this graph, as the graph is used as a benchmark.

For the second visualization: the program calculates the change in the target variable and
plots it against the time for when the change occurs. The program will display the second graph,
which is the change in the target variable versus time. The z-score is reverse-calculated for where
in the data the points (-3.0, -2.5, 0, 2.5, and 3.0) are located, and a dashed line is drawn across
the y-axis in these points. The graph will change color when it is plotted between the dashed
lines; between (- infinity, -3.0) and (3.0, infinity) the color of the line is red; (-3.0, -2.5) and (2.5,
3.0) is yellow, and (-2.5, 2.5) is green. Colors of the line do appear ‘red’ as it crosses over into
the green zone, however that is to display the significant change between the variables for that
specific timestamp.

For the third visualization: the program calculates the z-score of the initial values and plot
it on a graph, which is the z-score of the target variable vs time. Between the thresholds of (-
infinity, -3.0) and (3.0, infinity) the color of the line is red; (-3.0, -2.5) and (2.5, 3.0) is yellow,
and (-2.5, 2.5) is green.

All graphs are plotted with matplotlib. There is an option to save the data, if the user
wishes to do so. Matplotlib will be substituted for plotly for better use of datetime objects.
Further enhancements to Q1.py is to change from using matplotlib to plotly, enhance the
appearance of the graph, and code cleanup.

Task 3: Creation of the website has been deferred to a later Milestone. There are 5 pages
currently. The website is hosted on personal machines, requires a command line request to begin
hosting, and is not on a server. The website has three links on its homepage which direct to
another page. Logins for users is set up, along with an admin page.

Task 4: Data processing was not used to create Q1, so the task was deferred to Milestone

3, when the group will work on Q2.

Task 5 : Database setup is complete, however the group must switch from SQL to SQLite.

The database will be further enhanced on Milestone 3. The current SQL database saves the
metadata (tags, description, start/end timestamp, public/private) which will be further discussed
in Q2.

Task 6 : The Evaluation document is written using Google Docs. The presentation is

created with Google Slides.

Discussion of Contribution for Each Task:
Jessica: Worked on setting up Django web application, which is hosted on personal computer.

Created 4+ pages on the web application, one of which includes admin/user logins. Wrote
the code for Q1.py and did necessary calculations and research into plotting the
visualizations correctly. Trouble-shooted display problems with matplotlib and Q1.py
Checked to ensure that integration between csv.py and Q1.py worked. Contributed to
most of the Milestone 2 evaluation document.

Siomara: Wrote the read .csv program, which as of now only reads files locally, worked on
integrating Q1.py with csvReader.py by creating a change of strings to datetime objects
and floats. Researched into plotly visualization of data, researched into how to store
user’s files upload, researched into SQLite, wrote a dummy version of Q1.py using plotly.
Contributed to most of the presentation document.

Plan for the Next Milestone:

Task Jessica Siomara

1.) Q2 Calculations for Pearson
correlation, cross correlation,
visualizations, writing main
code

File storage, file conversion,
visualizations

2.) Narrow Data Research and create program
to narrow data. Integration
with database may be
needed. Create
NarrowData.py

Research how to implement a
search for queries depending
on the metadata provided by
other users.

3.) Database Processing Make sure that code can use
information from the
database

Linking database to Django,
running test cases for queries
and selections

4.) Meta-Data, Meta-Data Create Input.py, be able to Asking user for metadata

inputs retrieve metadata and use it
to run Narrow Data.py

input and storing into the
database

5.) Improve existing code Ensure that changes in .csv
are carried over and do not
break Q1.py and Q2.py

Creating more catch cases for
errors in file, x-axis plotting
for figures 2 and 3, change to
plotly

6.) Evaluation Document,
Presentation

Write evaluation document,
Create presentation, put code
onto GitHub repository.

Write evaluation document,
Create presentation, put code
onto GitHub repository.

Discussion of Each Planned Task:

Q2: Program will ask for user input for a target variable. Using that variable, the program
will proceed to narrow the data to parse out .csv files that have no correlation with the target
variable. Once the data in the repository has been narrowed down to 10 csv files, the program
will calculate the Pearson correlation and cross correlation for the target variable and display
several graphs.

The first visualization will consist of the target variable and two additional values. The
variable and its lag time will be denoted on the line graph, with the x-axis being time and the
y-axis being the rating of the values (with lag denoted). Scaling of the objects (i.e., Presidential
ratings is scaled from 0 to 100, whereas unemployment percentages is from 0 to 10) will be
worked on in a future milestone.

The second visualization is an in-depth version of the first graph. It will be a bar graph,
with the x-axis being correlation values from 0 to 1.0, and the y-axis containing the target
variable and two additional values (with lag indicated). The graph will consist of the absolute
value of the correlation. The graph will be colored based on whether or not the original
correlation was negative (in red), or positive (in green). An animation consisting of clicking on
the bar graph will display a corresponding graph depicting mathematical reasons why that
variable was selected to be displayed will be available, as well as a zoom-in option.

The third visualization will be of the cross correlation of the target variable. It will
display when the correlation when it happened across timestamps. The x-axis will consist of the
lags from 0 to 10 timestamps, while the y-axis is the correlation from -1.0 to 1.0. A dashed line
will mark where 0.0 correlation is. If the granularity is too large (yearly data vs daily data), then
the correlation will not be calculated, as there are not enough values to be able to calculate the
cross-correlation.

Test Q2.py against known examples to ensure that the code works correctly. Additional
display options, such as displaying occurrences of large granularity and inabilities to calculate
cross-correlation and pearson correlation because of this will be expanded on in future
milestones.

Narrow Data: Implement a program called NarrowData.py that takes the inputs from

Input.py and searches through the database for values that match the tags.
Tag requirements include:

Time range: the time range for files within the database must occur several
timestamps before the time range of the target variable and end at or near the end of the
time range of the target variable.

Values: values within the database must match one or more items designated in
Input.py as searching tags - if there is more than 10 results that return matching tags, then
the results that have 2 or more matches will be returned. Additional combing of the
searching tags vs data descriptions will be used to refine the search further.

Granularity: methods to handle different granularity sizes will be expanded upon
in later milestones.
 These values will be used in Q2.py to analyze the data for the correlation between

matching values and the target variable. The public/private metadata will be added on in future
milestones. Test the code against known results to ensure that the code is working correctly.
Make sure that the code works with Q1.py, csv.py, Q2.py, and the database.

Database Processing: Link database to Django and correlate Input.py to the database.
Convert current SQL database to SQLite. Test cases for queries for target variable comparison to
make sure code works well when trying to retrieve the data. Be able to retrieve and store data
in/from database.

Metadata, Metadata Inputs: Implement a program called Input.py that takes in user input
for the target variable, a csv file input, and additional user-defined tags, including: time range,
additional search values, and a short description of the uploaded csv file. Parsing the time range
into readable floats requires additional research.

Improve Read of Existing Code: Current web application runs locally, link it to a web
server with Django. Find a way to store all other .csv files on the web application and run test
cases for evaluation of variables. Perform code cleanup to improve readability on Q1.py. Ensure
that with the changes in csv.py that it will still work with Q1.py and Q2.py.

Evaluation Document, Presentation: Creation of an evaluation document to indicate what
was completed in Milestone 3, future requirements in Milestone 4. Create detailed explanations
of completed milestones and detailed plans of future milestones. Create a Presentation for
Milestone 3. Upload completed and/or current documents to GitHub repository and update links
on main page.

Sponsor Feedback:
Task 1: Handling different time formats, different data sets (not just SP 500), not only 2

columns but 2 rows as well.

Task 2: “zoom-in” most recent values, graph z-score of change of x vs time.

Task 3: M3 a) At least 10 variables and 3 plots

M3 b) different granularity, narrowing data based on timestamps

Task 4: Display plots on a webpage (i.e. in the browser). The user will be interacting with

a website.

Task 5: For the plots for delta_x or z-score(delta_x), use bar graphs instead of line graphs,

they look quite jerky. Bar graphs will not include lines between data points and focus more on

the values instead of the relationships between values (trends)

Task 6:

Sponsor Signature: ___ Date: ___________

Sponsor Evaluation
● Sponsor: detach and return this page to Dr. Chan (HC 322)
● Score (0-10) for each member: circle a score (or circle two adjacent scores for .25 or

write down a real number between 0 and 10)

Jessica 0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Siomara 0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Sponsor Signature: ___ Date: ___________

